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Matroids

M = (E, r), E finite set,

r :2E → N

A 7→ r(A)

Rank axioms
∀A ,B ⊆ E:

R1) 0 ≤ r(A) ≤ |A |;

R2) A ⊆ B ⇒ r(A) ≤ r(B);

R3) r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B).

2 / 50



Independent sets: cryptomorphism

M = (E,I), E finite set and I a collection of subsets

I1) I , ∅;

I2) J ∈ I, I ⊆ J ⇒ I ∈ I;

I3) I, J ∈ I, |I| ≤ |J| ⇒ ∃x ∈ J \ I : I ∪ {x} ∈ I.

Generalization of the notion of linear independence.
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Other cryptomorphisms

Bases
Maximal independent sets.

Circuits
Dependent sets such that all proper subsets are independent.

4 / 50



Representability

E = {columns of some matrix M}

I = {B ⊆ E : B cols. L.I.}

M = (E,I) is a matroid and it is called representable (over some
field).

Vámos
There is no representation whatever field you decide to choose
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Duality

M = (E, r) M∗ = (E, r∗)

∀A ⊆ E
r∗(A) = r(E \ A) + |A | − r(E)
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Matroids and codes

C code with generator matrix G.

MG = (E,IG)

E: columns IG : linearly independent columns

MDS code [n, k ]→ Uk ,n.

C⊥ corresponds to M∗G .
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Polymatroids

P = (S, ρ)

S , ∅ a finite set

ρ : 2S → R+

For each A ,B ⊆ S:

ρ1) ρ(∅) = 0;

ρ2) A ⊆ B ⇒ ρ(A) ≤ ρ(B);

ρ3) ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B).
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Textbooks

Jurrius, Relinde, and Ruud Pellikaan. ”Defining the q-Analogue of
a Matroid.” The Electronic Journal of Combinatorics 25.3 (2018):
3-2.

Gorla, E., Jurrius, R., López, H. H., Ravagnani, A. (2020).
Rank-metric codes and q-polymatroids. Journal of Algebraic
Combinatorics, 52, 1-19.
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Passing to the q-analogue

Generalization of combinatorial objects:

finite set→ fin. dim. vector space (over Fq).

To come back: q → 1.
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Passing to the q-analogue

finite set→ fin. dim. vector space (over Fq).

Elements→ 1-dim. spaces.
Size→ Dimension

n→
[
n
1

]
q

Union→ Sum
...
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Subspace lattice

n: fixed positive integer; E a fixed n-dimensional vector space over
a field, think of Fq.
L(E): lattice of subspaces of E.

Meet: intersection
Join: sum.
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q-matroids

M = (E, r)
E finite dimensional vector space over (Fq)

Rank function

r : { subsp. of E} → N

Rank axioms
∀A ,B ≤ E:

R1) 0 ≤ r(A) ≤ dim(A);

R2) A ≤ B ⇒ r(A) ≤ r(B);

R3) r(A + B) + r(A ∩ B) ≤ r(A) + r(B).
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Cryptomorphisms: independent spaces
Not a straightforward q-analogue.

M = (E,I)
E finite dimensional vector space over (Fq) I collection of
subspaces of E

Independent axioms
I1) I , ∅

I2) J ∈ I, I ≤ J, then I ∈ I;

I3) I, J ∈ I, dim(I) < dim(J), then there exists x ≤ J, dim(x) = 1,
x ⊈ I such that I + x ∈ I

I4) A ,B ≤ E, I, J maximal independent spaces of A and B,
respectively, then there is K ≤ I + J maximal independent
space of A + B.

Why 4 axioms?
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Other cryptomorphisms

Bases
Maximal independent subspaces.

Circuits
Dependent subspaces such that all proper subsets are
independent.
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Representability

Let M = (E, r) be a q-matroid of rank k over a field K .
Let A ⊆ E and let Y be a matrix with column space A .

We say that M is representable if there exists a k × n matrix G
over an extension field L/K such that r(A) is equal to the matrix
rank of GY over L .

Are all q-matroids representable?
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Dual q-matroid

Jurrius-Pellikaan
M = (E, r) q-matroid.
M∗ = (E, r∗)

∀A ≤ E : r∗(A) = dim(A) − r(E) + r(A⊥).

17 / 50



Equivalence

M1 = (E1, r1), M2 = (E2, r2) q-matroids

Lattice equivalent – Isomorphic
there is a lattice isomorphism (bijection, preserves the ordering,
the meet and the join)

ϕ : L(E1)→ L(E2)

such that r1(A) = r2(ϕ(A)), for each A ≤ L(E1).

18 / 50



q-Polymatroids
GJLR
P = (E, ρ)

E = (Fq)
n

ρ : {subspaces of E} → R+

For each A ,B ≤ E:

ρ1) 0 ≤ ρ(A) ≤ dim(A);

ρ2) A ⊆ B ⇒ ρ(A) ≤ ρ(B);

ρ3) ρ(A + B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B).

If the function ρ takes integer values we have a q−matroid.
Not all q-polymatroids are also q-matroids.
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Shiromoto’s (q, r)−polymatroid

P = (E, ρ), E = (Fq)
n

ρ : { subspace of E} → Z

such that:

For each A ,B ≤ E:

ρ1) 0 ≤ ρ(A) ≤ r dim(A);

ρ2) A ⊆ B ⇒ ρ(A) ≤ ρ(B);

ρ3) ρ(A + B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B).

For r = 1 we have a q-matroid.
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Shiromoto’s (q, r)−polymatroid

The Shiromoto’s (q, r)−polymatroid (R , ρ) corresponds to a
(E, ρ/r) with the given definition.

If we take a q−polymatroid , which takes values in Q instead of R,
then we get back a (q, r)−polymatroid multiplying the rank by a
suitable value r , which eliminates denominators.
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Equivalence of q-polymatroids

GJLR
((Fq)

n, ρ1) ∼ ((Fq)
n, ρ2) if there is a Fq-linear isomorphism

ϕ :(Fq)
n → (Fq)

n

A 7→ ϕ(A)

such that

∀A ≤ (Fq)
n : ρ1(A) = ρ2(ϕ(A)).
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Dual q-polymatroid

GJLR
P = ((Fq)

n, ρ) q-polymatroid. We define the dual of P as
P∗ = ((Fq)

n, ρ∗)

∀A ≤ (Fq)
n

ρ∗(A) = dim(A) − ρ(P) + ρ(A⊥),

A⊥ orthogonal complement w.r.t. the standard inner product.
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Properties of dual q-polymatroids

GJLR - JP
P = ((Fq)

n, ρ) q-polymatroid.

Then P∗ = ((Fq)
n, ρ∗) is a q-polymatroid as well.
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GJLR
P1 = ((Fq)

n, ρ1),P2((Fq)
n, ρ2) two q-polymatroids.

P1 ∼ P2 ⇒ P∗1 ∼ P∗2

GJLR
P = ((Fq)

n, ρ) q-polymatroid:

P∗∗ = P.
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VRMC and q-matroids (JP)

K ⊆ L Galois extension

C L -linear VRMC; J ≤ Kn K -linear:

C(J) = {c ∈ C : supp(c) ≤ J⊥}

C(J) can be proven to be a L -linear subspace of C.
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VRMC and q-matroids (JP)

C VRMC of length n over L ; J ≤ Kn K -linear; dimK (J) = t with
generator matrix Y

πJ :Ln → L t

x 7→ xYT

CJ := πJ(C)
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VRMC and q-matroids (JP)

l(J) := dimL(C(J)) r(J) := dimL(CJ)

Let dimL(C) = k :
l(J) + r(J) = k

E = Kn, r the rank function given by r(J) = dimL(CJ): MC = (E, r)
is a q-matroid.
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Warning

We will consider from now on the matrices in Mn,m(Fq)

and we will consider n,m ≥ 2, n ≤ m, which is not a problem
(otherwise we transpose!)
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Notation

For J ≤ (Fq)
n:

M(J, c) := {M ∈ Mn,m(Fq) : colsp(M) ≤ J}

For K ≤ (Fq)
m:

M(K , r) := {M ∈ Mn,m(Fq) : rowsp(M) ≤ K }
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Notation

Let C ≤ Mn,m(Fq) MRMC; we define two subcodes.

For J ≤ (Fq)
n:

C(J, c) := {M ∈ C : colsp(M) ≤ J}

For K ≤ (Fq)
m:

C(K , r) := {M ∈ C : rowsp(M) ≤ K }
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Notation

Let C ≤ Mn,m(Fq) MRMC; we define two subcodes.

For J ≤ (Fq)
n:

ρc(C, J) :=
1
m
(dim(C) − dim(C(J⊥, c)))

For K ≤ (Fq)
m:

ρr(C,K) :=
1
n
(dim(C) − dim(C(K⊥, r)))
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The two q-polymatroids associated to aMRMC

Let C ≤ Mn,m(Fq) MRMC

P(C, c) := ((Fq)
n, ρc), P(C, r) := ((Fq)

n, ρr) are q-polymatroids.
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Why q-polymatroids?

GJLR
We can study properties of our code using q-polymatroids.

C ≤ Mn,m(Fq) MRMC

dim(C) = mρc(C, (Fq)
n) = nρr(C,Fqm)
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Rank and distance

GJLR
C ≤ Mn,m(Fq) nonzero MRMC.

TFAE
• d(C) ≥ d;

• ρc(J) =
dim(C)

m for each J ≤ (Fq)
n s.t. dim(J) ≥ n − d + 1;

• ρr(K) =
dim(C)

n for each K ≤ (Fq)
m s.t. dim(K) ≥ m − d + 1;
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Rank and distance

GJLR
So therefore...

d(C) = n + 1 −min{d : ρc(J) = dim(C)/m

for each J ≤ (Fq)
n s.t. dim(J) = d}

d(C) = m + 1 −min{d : ρr(K) = dim(C)/n

for each K ≤ (Fq)
m s.t. dim(K) = d}
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MRD and rank

GJLR
C ≤ Mn,m(Fq) nonzero MRMC of minimum distance d

TFAE
• C MRD
• ρc(J) = dim(J), for each J ≤ (Fq)

n s.t. dim(J) ≤ n − d + 1;
• ρc(J) = dim(J), for each J ≤ (Fq)

n s.t. dim(J) = n − d + 1;
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MRD and rank

GJLR
C ≤ Mn,m(Fq) nonzero MRD of minimum distance d

For all J ≤ (Fq)
n:

ρc(J) =
{

n − d + 1 dim(J) ≥ n − d + 1
dim(J) dim(J) ≤ n − d + 1

So we get a uniform q-matroid.
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What happens with equivalence?
GJLR
C1,C2 ≤ Mn,m(Fq) MRMC which are equivalent.

m > n

P(C1, c) ∼ P(C2, c)

P(C1, r) ∼ P(C2, r)

m = n

P(C1, c) ∼ P(C2, c)

P(C1, r) ∼ P(C2, r)
or P(C1, c) ∼ P(C2, r)

P(C1, r) ∼ P(C2, c)

But codes that are not equivalent can have the same or, in any
case equivalent, q-polymatroids.
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Back to q-matroids

JP-GJLR
As we know, a VRMC C ≤ (Fqm)n gives a q-matroid on (Fq)

n.
If Γ is a basis of Fqm over Fq, MC = P(Γ(C), c).

GJLR
Let now Γ, Γ′ be two bases of Fqm over Fq:

P(Γ(C), c) = P(Γ′(C), c)

P(Γ(C), r) ∼ P(Γ′(C), r)
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Warning

GJLR
There are examples of RMCs, whose associated q-polymatroids
are not q-matroids...

... not even taking multiples of the rank.
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On generalized weights

GJLR
C ≤ Mn,m(Fq) nonzero MRMC.
Take an integer 1 ≤ i ≤ dim(C).

n < m

wi(C) = min{n − dim(J) : J ≤ (Fq)
n, dim(C) −mρc(C, J) ≥ i}
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On generalized weights

GJLR
C ≤ Mn,m(Fq) nonzero MRMC.
Take an integer 1 ≤ i ≤ dim(C).

n = m

wi(C) = min{wi(C, c),wi(C, r)}

wi(C, c) = min{n − dim(J) : J ≤ (Fq)
n, dim(C) −mρc(C, J) ≥ i}

wi(C, r) = min{m − dim(K) : K ≤ (Fq)
m, dim(C) − nρr(C,K) ≥ i}

43 / 50



Optimal anticodes and q-polymatroids

GJLR
C ≤ Mn,m(Fq) MRMC.
t = maxr(C).

TFAE
• C optimal anticode;
• {ρc(C, J) : J ≤ (Fq)

n} = {0, ..., t} or
{ρr(C, J) : J ≤ (Fq)

n} = {0, ..., t}, and m = n;
• ρc(C, (Fq)

n) = t or ρr(C, (Fq)
n) = t and m = n.
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Optimal anticodes and q-polymatroids

GJLR
C ≤ Mn,m(Fq) optimal anticode.
t = maxr(C).

m > n

P(C, c) ∼ ((Fq)
n, ρ)

with
ρ(J) = dim(J + ⟨e1, ..., en−t⟩) − (n − t)
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Optimal anticodes and q-polymatroids

GJLR
C ≤ Mn,m(Fq) optimal anticode.
t = maxr(C).

m = n

P(C, c) ∼ ((Fq)
n, ρ)

or
P(C, r) ∼ ((Fq)

n, ρ)
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Generalized weights and q-polymatroids (GJLR)

There are some cases in which the generalized weight determine
P(C, c), up to equivalence.

Generalized weights of MRD⇒ MRD + uniform q-matroid

Generalized weights of optimal anticode⇒ optimal anticode + the
q-matroid we just described.
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Generalized weights and q-polymatroids

There are some cases in which the generalized weight determine
P(C, c), up to equivalence.

dim(C) = 1 so C = ⟨A⟩.
w1(C) = d = r(A)

ρc(C, J) =
{

0 colsp(A) ≤ J⊥
1
m otherwise
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Duality (MRMC)

GJLR
C ≤ Mn,m(Fq) MRMC

P(C, c)∗ = P(C⊥, c) and P(C, r)∗ = P(C⊥, r)
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Duality (VRMC)

GJLR
Let C ≤ (Fqm)n be a VRMC and Γ a basis of Fqm over Fq, whose
dual basis is Γ∗. Let ⊥⊥ be the standard inner product in (Fqm)n.

P(Γ(C⊥⊥), c) = P(Γ∗(C), c) = P(Γ(C), c)∗

P(Γ(C⊥⊥), r) = P(Γ∗(C), r) ∼ P(Γ(C), r)∗.
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Thank you for your attention!
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