THREE PATHS TO THE RANK METRIC

q-(poly)matroids

M. Ceria Politecnico di Bari

MATROIDS

$$M = (E, r), E$$
 finite set,

$$r: 2^E \to \mathbb{N}$$
$$A \mapsto r(A)$$

RANK AXIOMS $\forall A, B \subseteq E$: R1) $0 \le r(A) \le |A|$; R2) $A \subseteq B \Rightarrow r(A) \le r(B)$; R3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$.

INDEPENDENT SETS: CRYPTOMORPHISM

M = (E, I), E finite set and I a collection of subsets

I1) $I \neq \emptyset$; I2) $J \in I, I \subseteq J \Rightarrow I \in I$; I3) $I, J \in I, |I| \le |J| \Rightarrow \exists x \in J \setminus I : I \cup \{x\} \in I$.

Generalization of the notion of linear independence.

Other cryptomorphisms

BASES

Maximal independent sets.

CIRCUITS

Dependent sets such that all proper subsets are independent.

Representability

 $E = \{ \text{columns of some matrix } M \}$

 $\mathcal{I} = \{ B \subseteq E : B \text{ cols. L.I.} \}$

M = (E, I) is a matroid and it is called **representable** (over some field).

Vámos

There is no representation whatever field you decide to choose

DUALITY

$$M = (E, r) M^* = (E, r^*)$$

$$\forall A \subseteq E$$

$$r^*(A) = r(E \setminus A) + |A| - r(E)$$

MATROIDS AND CODES

C code with generator matrix G.

$$M_{\rm G}=(E, I_{\rm G})$$

E: columns I_G : linearly independent columns

MDS code $[n, k] \rightarrow U_{k,n}$.

 C^{\perp} corresponds to M_G^* .

POLYMATROIDS

 $P = (S, \rho)$

 $S \neq \emptyset$ a finite set

$$\rho: \mathbf{2}^{S} \to \mathbb{R}^{+}$$

For each $A, B \subseteq S$: ρ_1) $\rho(\emptyset) = 0$; ρ_2) $A \subseteq B \Rightarrow \rho(A) \le \rho(B)$; ρ_3) $\rho(A \cup B) + \rho(A \cap B) \le \rho(A) + \rho(B)$.

Textbooks

Jurrius, Relinde, and Ruud Pellikaan. "Defining the *q*-Analogue of a Matroid." The Electronic Journal of Combinatorics 25.3 (2018): 3-2.

Gorla, E., Jurrius, R., López, H. H., Ravagnani, A. (2020). Rank-metric codes and q-polymatroids. Journal of Algebraic Combinatorics, 52, 1-19.

Passing to the q-analogue

Generalization of combinatorial objects:

finite set \rightarrow fin. dim. vector space (over \mathbb{F}_q).

To come back: $q \rightarrow 1$.

Passing to the q-analogue

finite set \rightarrow fin. dim. vector space (over \mathbb{F}_q).

Elements
$$\rightarrow$$
 1-dim. spaces.
Size \rightarrow Dimension
 $n \rightarrow \begin{bmatrix} n \\ 1 \end{bmatrix}_q$
Union \rightarrow Sum

...

SUBSPACE LATTICE

n: fixed positive integer; *E* a fixed *n*-dimensional vector space over a field, think of \mathbb{F}_q . $\mathcal{L}(E)$: lattice of subspaces of *E*.

Meet: intersection Join: sum.

q-MATROIDS

M = (E, r)E finite dimensional vector space over (\mathbb{F}_q)

RANK FUNCTION

 $r : \{ \text{ subsp. of } E \} \rightarrow \mathbb{N}$

RANK AXIOMS $\forall A, B \leq E$: R1) $0 \leq r(A) \leq \dim(A)$; R2) $A \leq B \Rightarrow r(A) \leq r(B)$; R3) $r(A + B) + r(A \cap B) \leq r(A) + r(B)$.

CRYPTOMORPHISMS: INDEPENDENT SPACES

Not a straightforward *q*-analogue.

M = (E, I)

E finite dimensional vector space over (\mathbb{F}_q) $\mathcal I$ collection of subspaces of E

INDEPENDENT AXIOMS

I1) $I \neq \emptyset$

- I2) $J \in I$, $I \leq J$, then $I \in I$;
- I3) $I, J \in I$, dim(I) < dim(J), then there exists $x \le J$, dim(x) = 1, $x \notin I$ such that $I + x \in I$
- I4) $A, B \le E, I, J$ maximal independent spaces of A and B, respectively, then there is $K \le I + J$ maximal independent space of A + B.

Why 4 axioms?

OTHER CRYPTOMORPHISMS

BASES

Maximal independent subspaces.

CIRCUITS

Dependent subspaces such that all proper subsets are independent.

Representability

Let M = (E, r) be a *q*-matroid of rank *k* over a field *K*. Let $A \subseteq E$ and let *Y* be a matrix with column space *A*.

We say that *M* is **representable** if there exists a $k \times n$ matrix *G* over an extension field L/K such that r(A) is equal to the matrix rank of *GY* over *L*.

Are all q-matroids representable?

Dual *q*-matroid

JURRIUS-PELLIKAAN M = (E, r) q-matroid. $M^* = (E, r^*)$

$$\forall A \leq E : r^*(A) = \dim(A) - r(E) + r(A^{\perp}).$$

Equivalence

$$M_1 = (E_1, r_1), M_2 = (E_2, r_2)$$
 q-matroids

Lattice equivalent – Isomorphic

there is a lattice isomorphism (bijection, preserves the ordering, the meet and the join)

$$\phi:\mathcal{L}(E_1)\to\mathcal{L}(E_2)$$

such that $r_1(A) = r_2(\phi(A))$, for each $A \leq \mathcal{L}(E_1)$.

q-Polymatroids

 $\begin{array}{l} \mathbf{GJLR} \\ \mathbf{P} = (\mathbf{E}, \boldsymbol{\rho}) \end{array}$

 $E = (\mathbb{F}_q)^n$

 ρ : {subspaces of E} $\rightarrow \mathbb{R}^+$

For each $A, B \le E$: ρ_1) $0 \le \rho(A) \le \dim(A)$; ρ_2) $A \subseteq B \Rightarrow \rho(A) \le \rho(B)$; ρ_3) $\rho(A + B) + \rho(A \cap B) \le \rho(A) + \rho(B)$.

If the function ρ takes integer values we have a q-matroid. Not all q-polymatroids are also q-matroids.

Shiromoto's (q, r)-polymatroid

$$P = (E, \rho), E = (\mathbb{F}_q)^n$$

 ρ : { subspace of E} $\rightarrow \mathbb{Z}$

such that:

For each A, B \leq E: ρ_1) $0 \leq \rho(A) \leq r \dim(A)$; ρ_2) $A \subseteq B \Rightarrow \rho(A) \leq \rho(B)$; ρ_3) $\rho(A + B) + \rho(A \cap B) \leq \rho(A) + \rho(B)$.

For r = 1 we have a *q*-matroid.

Shiromoto's (q, r)-polymatroid

The Shiromoto's (q, r)-polymatroid (R, ρ) corresponds to a $(E, \rho/r)$ with the given definition.

If we take a q-polymatroid, which takes values in \mathbb{Q} instead of \mathbb{R} , then we get back a (q, r)-polymatroid multiplying the rank by a suitable value r, which eliminates denominators.

Equivalence of q-polymatroids

GJLR $((\mathbb{F}_q)^n, \rho_1) \sim ((\mathbb{F}_q)^n, \rho_2)$ if there is a \mathbb{F}_q -linear isomorphism $\phi : (\mathbb{F}_q)^n \to (\mathbb{F}_q)^n$ $A \mapsto \phi(A)$

such that

$$\forall A \leq (\mathbb{F}_q)^n : \rho_1(A) = \rho_2(\phi(A)).$$

Dual *q*-polymatroid

GJLR

 $P = ((\mathbb{F}_q)^n, \rho)$ *q*-polymatroid. We define the **dual** of *P* as $P^* = ((\mathbb{F}_q)^n, \rho^*)$

$$orall A \leq (\mathbb{F}_q)^n \
ho^*(A) = \dim(A) -
ho(P) +
ho(A^{\perp}),$$

 A^{\perp} orthogonal complement w.r.t. the standard inner product.

PROPERTIES OF DUAL q-polymatroids

GJLR - JP $P = ((\mathbb{F}_q)^n, \rho)$ *q*-polymatroid.

Then $P^* = ((\mathbb{F}_q)^n, \rho^*)$ is a *q*-polymatroid as well.

GJLR $P_1 = ((\mathbb{F}_q)^n, \rho_1), P_2((\mathbb{F}_q)^n, \rho_2)$ two *q*-polymatroids.

$$P_1 \sim P_2 \Rightarrow P_1^* \sim P_2^*$$

GJLR
$$P = ((\mathbb{F}_q)^n, \rho)$$
 q-polymatroid:

$$P^{**} = P.$$

VRMC AND *q*-matroids (JP)

 $K \subseteq L$ Galois extension

C L-linear VRMC; $J \leq K^n K$ -linear:

$$C(J) = \{\overline{\mathbf{c}} \in C : supp(\overline{\mathbf{c}}) \le J^{\perp}\}$$

C(J) can be proven to be a *L*-linear subspace of *C*.

VRMC AND *q*-matroids (JP)

C VRMC of length *n* over L; $J \le K^n K$ -linear; dim_K(J) = t with generator matrix Y

$$\pi_J : L^n \to L^t$$
$$\overline{\mathbf{x}} \mapsto \overline{\mathbf{x}} Y_T$$

$$C_J := \pi_J(C)$$

VRMC AND *q*-matroids (JP)

$$I(J) := \dim_L(C(J)) \quad r(J) := \dim_L(C_J)$$

Let
$$\dim_L(C) = k$$
:
 $l(J) + r(J) = k$

 $E = K^n$, *r* the rank function given by $r(J) = \dim_L(C_J)$: $M_C = (E, r)$ is a *q*-matroid.

WARNING

We will consider from now on the matrices in $M_{n,m}(\mathbb{F}_q)$

and we will consider $n, m \ge 2, n \le m$, which is not a problem (otherwise we transpose!)

NOTATION

For $J \leq (\mathbb{F}_q)^n$: $M(J, c) := \{M \in M_{n,m}(\mathbb{F}_q) : colsp(M) \leq J\}$ For $K \leq (\mathbb{F}_q)^m$: $M(K, r) := \{M \in M_{n,m}(\mathbb{F}_q) : rowsp(M) \leq K\}$

NOTATION

Let $C \leq M_{n,m}(\mathbb{F}_q)$ MRMC; we define two subcodes.

For $J \leq (\mathbb{F}_q)^n$:

$$C(J,c) := \{M \in C : colsp(M) \le J\}$$

For $K \leq (\mathbb{F}_q)^m$:

$$C(K, r) := \{M \in C : rowsp(M) \le K\}$$

NOTATION

Let $C \leq M_{n,m}(\mathbb{F}_q)$ MRMC; we define two subcodes.

For $J \leq (\mathbb{F}_q)^n$: $\rho_c(C, J) := \frac{1}{m} (\dim(C) - \dim(C(J^{\perp}, c)))$

For $K \leq (\mathbb{F}_q)^m$:

$$\rho_r(C, K) := \frac{1}{n} (\dim(C) - \dim(C(K^{\perp}, r)))$$

THE TWO *q*-POLYMATROIDS ASSOCIATED TO A MRMC

Let $C \leq M_{n,m}(\mathbb{F}_q)$ MRMC

 $P(C, c) := ((\mathbb{F}_q)^n, \rho_c), P(C, r) := ((\mathbb{F}_q)^n, \rho_r)$ are *q*-polymatroids.

Why *q*-polymatroids?

GJLR

We can study properties of our code using *q*-polymatroids.

 $C \leq M_{n,m}(\mathbb{F}_q)$ MRMC

$$\dim(C) = m\rho_c(C, (\mathbb{F}_q)^n) = n\rho_r(C, \mathbb{F}_{q^m})$$

RANK AND DISTANCE

GJLR $C \leq M_{n,m}(\mathbb{F}_q)$ nonzero MRMC.

TFAE

•
$$d(C) \ge d$$
;
• $\rho_c(J) = \frac{\dim(C)}{m}$ for each $J \le (\mathbb{F}_q)^n$ s.t. $\dim(J) \ge n - d + 1$;
• $\rho_r(K) = \frac{\dim(C)}{n}$ for each $K \le (\mathbb{F}_q)^m$ s.t. $\dim(K) \ge m - d + 1$;

RANK AND DISTANCE

GJLR So therefore...

$$d(C) = n + 1 - \min\{d : \rho_c(J) = \dim(C)/m$$

for each $J \le (\mathbb{F}_q)^n$ s.t. $\dim(J) = d\}$

$$d(C) = m + 1 - \min\{d : \rho_r(K) = \dim(C)/n$$
for each $K \le (\mathbb{F}_q)^m$ s.t. $\dim(K) = d\}$

MRD AND RANK

GJLR

 $C \leq M_{n,m}(\mathbb{F}_q)$ nonzero MRMC of minimum distance d

TFAE

- C MRD
- $\rho_c(J) = \dim(J)$, for each $J \leq (\mathbb{F}_q)^n$ s.t. $\dim(J) \leq n d + 1$;
- $\rho_c(J) = \dim(J)$, for each $J \leq (\mathbb{F}_q)^n$ s.t. $\dim(J) = n d + 1$;

MRD AND RANK

GJLR $C \leq M_{n,m}(\mathbb{F}_q)$ nonzero MRD of minimum distance *d*

For all $J \leq (\mathbb{F}_q)^n$: $\rho_c(J) = \begin{cases} n-d+1 & \dim(J) \geq n-d+1 \\ \dim(J) & \dim(J) \leq n-d+1 \end{cases}$

So we get a uniform *q*-matroid.

WHAT HAPPENS WITH EQUIVALENCE?

GJLR $C_1, C_2 \leq M_{n,m}(\mathbb{F}_q)$ MRMC which are equivalent. m > n

$$P(C_1, c) \sim P(C_2, c)$$
$$P(C_1, r) \sim P(C_2, r)$$

m = n

$$\begin{array}{l} P(C_1,c) \sim P(C_2,c) \\ P(C_1,r) \sim P(C_2,r) \end{array} \quad \text{or} \qquad \begin{array}{l} P(C_1,c) \sim P(C_2,r) \\ P(C_1,r) \sim P(C_2,c) \end{array}$$

But codes that are not equivalent can have the same or, in any case equivalent, *q*-polymatroids.

BACK TO *q*-MATROIDS

JP-GJLR

As we know, a VRMC $C \leq (\mathbb{F}_{q^m})^n$ gives a *q*-matroid on $(\mathbb{F}_q)^n$. If Γ is a basis of \mathbb{F}_{q^m} over \mathbb{F}_q , $M_C = P(\Gamma(C), c)$.

GJLR

Let now Γ , Γ' be two bases of \mathbb{F}_{q^m} over \mathbb{F}_q :

$$P(\Gamma(C), c) = P(\Gamma'(C), c)$$
$$P(\Gamma(C), r) \sim P(\Gamma'(C), r)$$

WARNING

GJLR

There are examples of RMCs, whose associated *q*-polymatroids are not *q*-matroids...

... not even taking multiples of the rank.

ON GENERALIZED WEIGHTS

GJLR $C \le M_{n,m}(\mathbb{F}_q)$ nonzero MRMC. Take an integer $1 \le i \le \dim(C)$.

n < *m*

$$w_i(C) = \min\{n - \dim(J) : J \le (\mathbb{F}_q)^n, \dim(C) - m\rho_c(C, J) \ge i\}$$

ON GENERALIZED WEIGHTS

GJLR

 $C \leq M_{n,m}(\mathbb{F}_q)$ nonzero MRMC. Take an integer $1 \leq i \leq \dim(C)$.

n = m

$$w_i(C) = \min\{w_i(C, c), w_i(C, r)\}$$

$$w_i(C, c) = \min\{n - \dim(J) : J \le (\mathbb{F}_q)^n, \dim(C) - m\rho_c(C, J) \ge i\}$$

$$w_i(C, r) = \min\{m - \dim(K) : K \le (\mathbb{F}_q)^m, \dim(C) - n\rho_r(C, K) \ge i\}$$

Optimal anticodes and q-polymatroids

GJLR $C \le M_{n,m}(\mathbb{F}_q)$ MRMC. t = maxr(C).

TFAE

• C optimal anticode;

• {
$$\rho_c(C, J) : J \le (\mathbb{F}_q)^n$$
} = {0, ..., t} or
{ $\rho_r(C, J) : J \le (\mathbb{F}_q)^n$ } = {0, ..., t}, and $m = n$;

• $\rho_c(C, (\mathbb{F}_q)^n) = t$ or $\rho_r(C, (\mathbb{F}_q)^n) = t$ and m = n.

Optimal anticodes and q-polymatroids

GJLR

$$C \le M_{n,m}(\mathbb{F}_q)$$
 optimal anticode.
 $t = maxr(C)$.

m > *n*

$$P(C, c) \sim ((\mathbb{F}_q)^n, \rho)$$

with

$$\rho(J) = \dim(J + \langle \overline{\mathbf{e}}_1, ..., \overline{\mathbf{e}}_{n-t} \rangle) - (n-t)$$

Optimal anticodes and q-polymatroids

GJLR

$$C \leq M_{n,m}(\mathbb{F}_q)$$
 optimal anticode.
 $t = maxr(C)$.

m = n

$$P(C, c) \sim ((\mathbb{F}_q)^n, \rho)$$

or

 $P(C,r) \sim ((\mathbb{F}_q)^n, \rho)$

Generalized weights and q-polymatroids (GJLR)

There are **some cases** in which the generalized weight determine P(C, c), up to equivalence.

Generalized weights of MRD \Rightarrow MRD + uniform *q*-matroid

Generalized weights of optimal anticode \Rightarrow optimal anticode + the *q*-matroid we just described.

Generalized weights and q-polymatroids

There are **some cases** in which the generalized weight determine P(C, c), up to equivalence.

 $\dim(C) = 1 \text{ so } C = \langle A \rangle.$ $w_1(C) = d = r(A)$

$$\rho_c(C, J) = \begin{cases} 0 & colsp(A) \le J^{\perp} \\ \frac{1}{m} & otherwise \end{cases}$$

DUALITY (MRMC)

GJLR $C \le M_{n,m}(\mathbb{F}_q) \text{ MRMC}$

$$P(C, c)^* = P(C^{\perp}, c)$$
 and $P(C, r)^* = P(C^{\perp}, r)$

DUALITY (VRMC)

GJLR

Let $C \leq (\mathbb{F}_{q^m})^n$ be a VRMC and Γ a basis of \mathbb{F}_{q^m} over \mathbb{F}_q , whose dual basis is Γ^* . Let \mathbb{I} be the standard inner product in $(\mathbb{F}_{q^m})^n$.

$$P(\Gamma(C^{\perp}), c) = P(\Gamma^{*}(C), c) = P(\Gamma(C), c)^{*}$$
$$P(\Gamma(C^{\perp}), r) = P(\Gamma^{*}(C), r) \sim P(\Gamma(C), r)^{*}.$$

Thank you for your attention!