Three paths to the rank metric

q-(poly)matroids

M. Ceria
Politecnico di Bari

Matroids

$M=(E, r), E$ finite set,

$$
\begin{aligned}
r: 2^{E} & \rightarrow \mathbb{N} \\
A & \mapsto r(A)
\end{aligned}
$$

Rank axioms
$\forall A, B \subseteq E:$
R1) $0 \leq r(A) \leq|A|$;
R2) $A \subseteq B \Rightarrow r(A) \leq r(B)$;
R3) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Independent sets: cryptomorphism

$M=(E, I), E$ finite set and I a collection of subsets

I1) $I \neq \emptyset$;
12) $J \in \mathcal{I}, I \subseteq J \Rightarrow I \in \mathcal{I}$;

I3) $I, J \in \mathcal{I},|\| \leq|J| \Rightarrow \exists x \in J \backslash I: I \cup\{x\} \in \mathcal{I}$.
Generalization of the notion of linear independence.

OTHER CRYPTOMORPHISMS

Bases
Maximal independent sets.
Circuits
Dependent sets such that all proper subsets are independent.

Representability

$E=\{$ columns of some matrix M$\}$
$\mathcal{I}=\{B \subseteq E: B$ cols. L.I. $\}$
$M=(E, I)$ is a matroid and it is called representable (over some field).

Vámos
There is no representation whatever field you decide to choose

Duality

$$
M=(E, r) M^{*}=\left(E, r^{*}\right)
$$

$\forall A \subseteq E$

$$
r^{*}(A)=r(E \backslash A)+|A|-r(E)
$$

Matroids and codes

C code with generator matrix G.

$$
M_{G}=\left(E, I_{G}\right)
$$

E : columns I_{G} : linearly independent columns

MDS code $[n, k] \rightarrow U_{k, n}$.
C^{\perp} corresponds to M_{G}^{*}.

Polymatroids

$$
P=(S, \rho)
$$

$S \neq \emptyset$ a finite set

$$
\rho: 2^{S} \rightarrow \mathbb{R}^{+}
$$

For each $A, B \subseteq S$:
$\left.\rho_{1}\right) \rho(\emptyset)=0$;
$\left.\rho_{2}\right) A \subseteq B \Rightarrow \rho(A) \leq \rho(B)$;
$\left.\rho_{3}\right) \rho(A \cup B)+\rho(A \cap B) \leq \rho(A)+\rho(B)$.

Textbooks

Jurrius, Relinde, and Ruud Pellikaan. "Defining the q-Analogue of a Matroid." The Electronic Journal of Combinatorics 25.3 (2018): 3-2.

Gorla, E., Jurrius, R., López, H. H., Ravagnani, A. (2020). Rank-metric codes and q-polymatroids. Journal of Algebraic Combinatorics, 52, 1-19.

Passing to the q-analogue

Generalization of combinatorial objects:

finite set \rightarrow fin. dim. vector space (over \mathbb{F}_{q}).

To come back: $q \rightarrow 1$.

Passing to the q-analogue

finite set \rightarrow fin. dim. vector space (over \mathbb{F}_{q}).

Elements \rightarrow 1-dim. spaces.
Size \rightarrow Dimension
$n \rightarrow\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}$
Union \rightarrow Sum

Subspace lattice

n : fixed positive integer; E a fixed n-dimensional vector space over a field, think of \mathbb{F}_{q}. $\mathcal{L}(E)$: lattice of subspaces of E.

Meet: intersection Join: sum.

q-MATROIDS

$M=(E, r)$
E finite dimensional vector space over $\left(\mathbb{F}_{q}\right)$
Rank function

$$
r:\{\text { subsp. of } E\} \rightarrow \mathbb{N}
$$

Rank axioms
$\forall A, B \leq E$:
R1) $0 \leq r(A) \leq \operatorname{dim}(A)$;
R2) $A \leq B \Rightarrow r(A) \leq r(B)$;
R3) $r(A+B)+r(A \cap B) \leq r(A)+r(B)$.

Cryptomorphisms: independent spaces

Not a straightforward q-analogue.
$M=(E, \mathcal{I})$
E finite dimensional vector space over $\left(\mathbb{F}_{q}\right) I$ collection of subspaces of E

Independent axioms
11) $I \neq \emptyset$

I2) $J \in \mathcal{I}, I \leq J$, then $I \in \mathcal{I}$;
I3) $I, J \in I, \operatorname{dim}(I)<\operatorname{dim}(J)$, then there exists $x \leq J, \operatorname{dim}(x)=1$, $x \nsubseteq I$ such that $I+x \in I$
I4) $A, B \leq E, I, J$ maximal independent spaces of A and B, respectively, then there is $K \leq I+J$ maximal independent space of $A+B$.

Why 4 axioms?

OTHER CRYPTOMORPHISMS

Bases

Maximal independent subspaces.
Circuits
Dependent subspaces such that all proper subsets are independent.

Representability

Let $M=(E, r)$ be a q-matroid of rank k over a field K. Let $A \subseteq E$ and let Y be a matrix with column space A.

We say that M is representable if there exists a $k \times n$ matrix G over an extension field L / K such that $r(A)$ is equal to the matrix rank of GY over L.

Are all q-matroids representable?

DUAL q-MATROID

```
Jurrius-Pellikaan
\(M=(E, r) q\)-matroid.
\(M^{*}=\left(E, r^{*}\right)\)
\(\forall A \leq E: r^{*}(A)=\operatorname{dim}(A)-r(E)+r\left(A^{\perp}\right)\).
```


EQuivalence

$M_{1}=\left(E_{1}, r_{1}\right), M_{2}=\left(E_{2}, r_{2}\right) q$-matroids
Lattice equivalent - Isomorphic
there is a lattice isomorphism (bijection, preserves the ordering, the meet and the join)

$$
\phi: \mathcal{L}\left(E_{1}\right) \rightarrow \mathcal{L}\left(E_{2}\right)
$$

such that $r_{1}(A)=r_{2}(\phi(A))$, for each $A \leq \mathcal{L}\left(E_{1}\right)$.

q-Polymatroids

GJLR
$P=(E, \rho)$
$E=\left(\mathbb{F}_{q}\right)^{n}$

$$
\rho:\{\text { subspaces of } E\} \rightarrow \mathbb{R}^{+}
$$

For each $A, B \leq E$:
$\left.\rho_{1}\right) 0 \leq \rho(A) \leq \operatorname{dim}(A)$;
$\left.\rho_{2}\right) A \subseteq B \Rightarrow \rho(A) \leq \rho(B)$;
$\left.\rho_{3}\right) \rho(A+B)+\rho(A \cap B) \leq \rho(A)+\rho(B)$.
If the function ρ takes integer values we have a q-matroid.
Not all q-polymatroids are also q-matroids.

Shiromoto's (q, r)-polymatroid

$$
P=(E, \rho), E=\left(\mathbb{F}_{q}\right)^{n}
$$

$$
\rho:\{\text { subspace of } E\} \rightarrow \mathbb{Z}
$$

such that:

For each $A, B \leq E$:
$\left.\rho_{1}\right) 0 \leq \rho(A) \leq r \operatorname{dim}(A)$;
$\left.\rho_{2}\right) A \subseteq B \Rightarrow \rho(A) \leq \rho(B)$;
$\left.\rho_{3}\right) \rho(A+B)+\rho(A \cap B) \leq \rho(A)+\rho(B)$.
For $r=1$ we have a q-matroid.

Shiromoto's (q, r)-POLYMATROID

The Shiromoto's (q, r)-polymatroid (R, ρ) corresponds to a ($E, \rho / r$) with the given definition.

If we take a q-polymatroid, which takes values in \mathbb{Q} instead of \mathbb{R}, then we get back a (q, r)-polymatroid multiplying the rank by a suitable value r, which eliminates denominators.

Equivalence of q-polymatroids

GJLR
$\left(\left(\mathbb{F}_{q}\right)^{n}, \rho_{1}\right) \sim\left(\left(\mathbb{F}_{q}\right)^{n}, \rho_{2}\right)$ if there is a \mathbb{F}_{q}-linear isomorphism

$$
\begin{gathered}
\phi:\left(\mathbb{F}_{q}\right)^{n} \rightarrow\left(\mathbb{F}_{q}\right)^{n} \\
A \mapsto \phi(A)
\end{gathered}
$$

such that

$$
\forall A \leq\left(\mathbb{F}_{q}\right)^{n}: \rho_{1}(A)=\rho_{2}(\phi(A))
$$

DUAL q-POLYMATROID

GJLR

$P=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho\right) q$-polymatroid. We define the dual of P as
$P^{*}=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho^{*}\right)$
$\forall A \leq\left(\mathbb{F}_{q}\right)^{n}$

$$
\rho^{*}(A)=\operatorname{dim}(A)-\rho(P)+\rho\left(A^{\perp}\right)
$$

A^{\perp} orthogonal complement w.r.t. the standard inner product.

Properties of dual q-polymatroids

```
GJLR - JP
P=((\mp@subsup{\mathbb{F}}{q}{}\mp@subsup{)}{}{n},\rho)q-polymatroid.
```

Then $P^{*}=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho^{*}\right)$ is a q-polymatroid as well.

GJLR

$P_{1}=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho_{1}\right), P_{2}\left(\left(\mathbb{F}_{q}\right)^{n}, \rho_{2}\right)$ two q-polymatroids.

$$
P_{1} \sim P_{2} \Rightarrow P_{1}^{*} \sim P_{2}^{*}
$$

GJLR
$P=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho\right) q$-polymatroid:

$$
P^{* *}=P .
$$

VRMC and q-matroids (JP)

$K \subseteq L$ Galois extension

C L-linear VRMC; $J \leq K^{n} K$-linear:

$$
C(J)=\left\{\overline{\mathbf{c}} \in C: \operatorname{supp}(\overline{\mathbf{c}}) \leq J^{\perp}\right\}
$$

$C(J)$ can be proven to be a L-linear subspace of C.

VRMC and q-MATRoIds (JP)

C VRMC of length n over $L ; J \leq K^{n} K$-linear; $\operatorname{dim}_{K}(J)=t$ with generator matrix Y

$$
\begin{array}{r}
\pi_{J}: L^{n} \rightarrow L^{t} \\
\overline{\mathbf{x}} \mapsto \overline{\mathbf{x}} Y_{T}
\end{array}
$$

$$
C_{J}:=\pi_{J}(C)
$$

VRMC and q-matroids (JP)

$$
I(J):=\operatorname{dim}_{L}(C(J)) \quad r(J):=\operatorname{dim}_{L}\left(C_{J}\right)
$$

Let $\operatorname{dim}_{L}(C)=k$:

$$
I(J)+r(J)=k
$$

$E=K^{n}, r$ the rank function given by $r(J)=\operatorname{dim}_{L}\left(C_{J}\right): M_{C}=(E, r)$ is a q-matroid.

Warning

We will consider from now on the matrices in $M_{n, m}\left(\mathbb{F}_{q}\right)$
and we will consider $n, m \geq 2, n \leq m$, which is not a problem (otherwise we transpose!)

Notation

For $J \leq\left(\mathbb{F}_{q}\right)^{n}$:

$$
M(J, c):=\left\{M \in M_{n, m}\left(\mathbb{F}_{q}\right): \operatorname{colsp}(M) \leq J\right\}
$$

For $K \leq\left(\mathbb{F}_{q}\right)^{m}$:

$$
M(K, r):=\left\{M \in M_{n, m}\left(\mathbb{F}_{q}\right): \operatorname{rowsp}(M) \leq K\right\}
$$

Notation

Let $C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC; we define two subcodes.

For $J \leq\left(\mathbb{F}_{q}\right)^{n}$:

$$
C(J, c):=\{M \in C: \operatorname{colsp}(M) \leq J\}
$$

For $K \leq\left(\mathbb{F}_{q}\right)^{m}$:

$$
C(K, r):=\{M \in C: \operatorname{rowsp}(M) \leq K\}
$$

Notation

Let $C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC; we define two subcodes.

For $J \leq\left(\mathbb{F}_{q}\right)^{n}$:

$$
\rho_{c}(C, J):=\frac{1}{m}\left(\operatorname{dim}(C)-\operatorname{dim}\left(C\left(J^{\perp}, c\right)\right)\right)
$$

For $K \leq\left(\mathbb{F}_{q}\right)^{m}$:

$$
\rho_{r}(C, K):=\frac{1}{n}\left(\operatorname{dim}(C)-\operatorname{dim}\left(C\left(K^{\perp}, r\right)\right)\right)
$$

The two q-polymatroids associated to a MRMC

Let $C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC
$P(C, c):=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho_{c}\right), P(C, r):=\left(\left(\mathbb{F}_{q}\right)^{n}, \rho_{r}\right)$ are q-polymatroids.

Why q-polymatroids?

GJLR

We can study properties of our code using q-polymatroids.
$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC

$$
\operatorname{dim}(C)=m \rho_{c}\left(C,\left(\mathbb{F}_{q}\right)^{n}\right)=n \rho_{r}\left(C, \mathbb{F}_{q^{m}}\right)
$$

Rank and distance

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ nonzero MRMC.
TFAE

- $d(C) \geq d ;$
- $\rho_{c}(J)=\frac{\operatorname{dim}(C)}{m}$ for each $J \leq\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\operatorname{dim}(J) \geq n-d+1$;
- $\rho_{r}(K)=\frac{\operatorname{dim}(C)}{n}$ for each $K \leq\left(\mathbb{F}_{q}\right)^{m}$ s.t. $\operatorname{dim}(K) \geq m-d+1$;

Rank and distance

GJLR

So therefore...

$$
\begin{aligned}
& d(C)=n+1-\min \left\{d: \rho_{c}(J)=\operatorname{dim}(C) / m\right. \\
& \left.\quad \text { for each } J \leq\left(\mathbb{F}_{q}\right)^{n} \text { s.t. } \operatorname{dim}(J)=d\right\}
\end{aligned}
$$

$$
d(C)=m+1-\min \left\{d: \rho_{r}(K)=\operatorname{dim}(C) / n\right.
$$

for each $K \leq\left(\mathbb{F}_{q}\right)^{m}$ s.t. $\left.\operatorname{dim}(K)=d\right\}$

MRD AND RANK

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ nonzero MRMC of minimum distance d

TFAE

- C MRD
- $\rho_{c}(J)=\operatorname{dim}(J)$, for each $J \leq\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\operatorname{dim}(J) \leq n-d+1$;
- $\rho_{c}(J)=\operatorname{dim}(J)$, for each $J \leq\left(\mathbb{F}_{q}\right)^{n}$ s.t. $\operatorname{dim}(J)=n-d+1$;

MRD and Rank

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ nonzero MRD of minimum distance d

For all $J \leq\left(\mathbb{F}_{q}\right)^{n}$:

$$
\rho_{c}(J)= \begin{cases}n-d+1 & \operatorname{dim}(J) \geq n-d+1 \\ \operatorname{dim}(J) & \operatorname{dim}(J) \leq n-d+1\end{cases}
$$

So we get a uniform q-matroid.

What happens with equivalence?

GJLR
$C_{1}, C_{2} \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC which are equivalent.
$m>n$

$$
\begin{aligned}
& P\left(C_{1}, c\right) \sim P\left(C_{2}, c\right) \\
& P\left(C_{1}, r\right) \sim P\left(C_{2}, r\right)
\end{aligned}
$$

$m=n$

$$
\begin{array}{ll}
P\left(C_{1}, c\right) \sim P\left(C_{2}, c\right) \\
P\left(C_{1}, r\right) \sim P\left(C_{2}, r\right)
\end{array} \quad \text { or } \quad P\left(C_{1}, c\right) \sim P\left(C_{2}, r\right), ~ P\left(C_{1}, r\right) \sim P\left(C_{2}, c\right)
$$

But codes that are not equivalent can have the same or, in any case equivalent, q-polymatroids.

Back to q-MATROIDS

JP-GJLR

As we know, a VRMC $C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$ gives a q-matroid on $\left(\mathbb{F}_{q}\right)^{n}$. If Γ is a basis of $\mathbb{F}_{q^{m}}$ over $\mathbb{F}_{q}, M_{C}=P(\Gamma(C), c)$.

GJLR
Let now Γ, Γ^{\prime} be two bases of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} :

$$
\begin{aligned}
& P(\Gamma(C), c)=P\left(\Gamma^{\prime}(C), c\right) \\
& P(\Gamma(C), r) \sim P\left(\Gamma^{\prime}(C), r\right)
\end{aligned}
$$

Warning

GJLR

There are examples of RMCs, whose associated q-polymatroids are not q-matroids...
... not even taking multiples of the rank.

On Generalized weights

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ nonzero MRMC.
Take an integer $1 \leq i \leq \operatorname{dim}(C)$.
$n<m$
$w_{i}(C)=\min \left\{n-\operatorname{dim}(J): J \leq\left(\mathbb{F}_{q}\right)^{n}, \operatorname{dim}(C)-m \rho_{C}(C, J) \geq i\right\}$

On Generalized weights

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ nonzero MRMC.
Take an integer $1 \leq i \leq \operatorname{dim}(C)$.
$n=m$

$$
w_{i}(C)=\min \left\{w_{i}(C, c), w_{i}(C, r)\right\}
$$

$w_{i}(C, c)=\min \left\{n-\operatorname{dim}(J): J \leq\left(\mathbb{F}_{q}\right)^{n}, \operatorname{dim}(C)-m \rho_{c}(C, J) \geq i\right\}$
$w_{i}(C, r)=\min \left\{m-\operatorname{dim}(K): K \leq\left(\mathbb{F}_{q}\right)^{m}, \operatorname{dim}(C)-n \rho_{r}(C, K) \geq i\right\}$

Optimal anticodes and q-POLYMatroids

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC.
$t=\operatorname{maxr}(C)$.

TFAE

- C optimal anticode;
- $\left\{\rho_{c}(C, J): J \leq\left(\mathbb{F}_{q}\right)^{n}\right\}=\{0, \ldots, t\}$ or $\left\{\rho_{r}(C, J): J \leq\left(\mathbb{F}_{q}\right)^{n}\right\}=\{0, \ldots, t\}$, and $m=n$;
- $\rho_{c}\left(C,\left(\mathbb{F}_{q}\right)^{n}\right)=t$ or $\rho_{r}\left(C,\left(\mathbb{F}_{q}\right)^{n}\right)=t$ and $m=n$.

Optimal anticodes and q-polymatroids

GJLR
$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ optimal anticode.
$t=\operatorname{maxr}(C)$.
$m>n$

$$
P(C, c) \sim\left(\left(\mathbb{F}_{q}\right)^{n}, \rho\right)
$$

with

$$
\rho(J)=\operatorname{dim}\left(J+\left\langle\overline{\mathbf{e}}_{1}, \ldots, \overline{\mathbf{e}}_{n-t}\right\rangle\right)-(n-t)
$$

Optimal anticodes and q-polymatroids

GJLR
$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ optimal anticode.
$t=\operatorname{maxr}(C)$.
$m=n$

$$
P(C, c) \sim\left(\left(\mathbb{F}_{q}\right)^{n}, \rho\right)
$$

or

$$
P(C, r) \sim\left(\left(\mathbb{F}_{q}\right)^{n}, \rho\right)
$$

Generalized weights and q-polymatroids (GJLR)

There are some cases in which the generalized weight determine $P(C, c)$, up to equivalence.

Generalized weights of MRD \Rightarrow MRD + uniform q-matroid

Generalized weights of optimal anticode \Rightarrow optimal anticode + the q-matroid we just described.

Generalized weights and q-pOlymatroids

There are some cases in which the generalized weight determine $P(C, c)$, up to equivalence.

$$
\begin{aligned}
& \operatorname{dim}(C)=1 \text { so } C=\langle A\rangle . \\
& w_{1}(C)=d=r(A)
\end{aligned}
$$

$$
\rho_{c}(C, J)= \begin{cases}0 & \operatorname{colsp}(A) \leq J^{\perp} \\ \frac{1}{m} & \text { otherwise }\end{cases}
$$

Duality (MRMC)

GJLR

$C \leq M_{n, m}\left(\mathbb{F}_{q}\right)$ MRMC

$$
P(C, c)^{*}=P\left(C^{\perp}, c\right) \text { and } P(C, r)^{*}=P\left(C^{\perp}, r\right)
$$

Duality (VRMC)

GJLR

Let $C \leq\left(\mathbb{F}_{q^{m}}\right)^{n}$ be a VRMC and Γ a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}, whose dual basis is Γ^{*}. Let \Perp be the standard inner product in $\left(\mathbb{F}_{q^{m}}\right)^{n}$.

$$
\begin{aligned}
& P\left(\Gamma\left(C^{\Perp}\right), c\right)=P\left(\Gamma^{*}(C), c\right)=P(\Gamma(C), c)^{*} \\
& P\left(\Gamma\left(C^{\Perp}\right), r\right)=P\left(\Gamma^{*}(C), r\right) \sim P(\Gamma(C), r)^{*} .
\end{aligned}
$$

Thank you for your attention!

